当前位置:魔方格数学抛物线的定..>一个动圆与定圆:相外切,且与定直线:相切,则此动圆的圆心的轨迹..
题文
一个动圆与定圆相外切,且与定直线相切,则此动圆的圆心的轨迹方程是(    )
A.B.C.D.
题型:单选题难度:偏易来源:不详
答案
D.

试题分析:由题意知,点到定点的距离减去1等于到定直线的距离,即点到定点的距离等于到定直线的距离.由抛物线的定义知,点的轨迹方程为抛物线且焦点坐标为,准线方程为,即可求出该点的轨迹方程.
据魔方格专家权威分析,试题“一个动圆与定圆:相外切,且与定直线:相切,则此动圆的圆心的轨迹..”主要考查你对  抛物线的定义  等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问魔方格学习社区
抛物线的定义
考点名称:抛物线的定义
  • 抛物线的定义:

    平面内与一个定点F和一条定直线l(F∈l)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线,抛物线的定义也可以说成是:平面内与一个定点F和一条定直线l的距离的比等于1的点的轨迹.

    抛物线中的有关概念:

    定义 图形
    抛物线的弦、焦点弦 连结抛物线上任意两点的线段,叫做抛物线的弦.
    过抛物线焦点的弦,叫做焦点弦
    抛物线的通径和焦参数 过焦点且垂直于抛物线的弦叫做抛物线的通径,通径长度的一半叫做抛物线的焦参数
    焦点半径 抛物线上一点P和焦点的连线,叫做点P的焦点半径或焦半径
    抛物线的焦准距 抛物线的焦点和它的准线间的距离,叫做焦准距,依据定义,显然有KO=OF即焦准距等于通径长的一半,焦准距用常数p表示

  • 抛物线的规律总结:

    ①在抛物线的定义中的定点F不在直线l上,否则动点的轨迹就是过点F且垂直于直线l的一条直线,而不再是抛物线;
    ②抛物线的定义中指明了抛物线上的点到焦点的距离与到准线的距离相等,故在一些问题中,二者可以互相转化,这是利用抛物线定义解题的关键.

以上内容为魔方格学习社区(www.mofangge.com)原创内容,未经允许不得转载!